Study of ionic currents across a model membrane channel using Brownian dynamics.
نویسندگان
چکیده
Brownian dynamics simulations have been carried out to study ionic currents flowing across a model membrane channel under various conditions. The model channel we use has a cylindrical transmembrane segment that is joined to a catenary vestibule at each side. Two cylindrical reservoirs connected to the channel contain a fixed number of sodium and chloride ions. Under a driving force of 100 mV, the channel is virtually impermeable to sodium ions, owing to the repulsive dielectric force presented to ions by the vestibular wall. When two rings of dipoles, with their negative poles facing the pore lumen, are placed just above and below the constricted channel segment, sodium ions cross the channel. The conductance increases with increasing dipole strength and reaches its maximum rapidly; a further increase in dipole strength does not increase the channel conductance further. When only those ions that acquire a kinetic energy large enough to surmount a barrier are allowed to enter the narrow transmembrane segment, the channel conductance decreases monotonically with the barrier height. This barrier represents those interactions between an ion, water molecules, and the protein wall in the transmembrane segment that are not treated explicitly in the simulation. The conductance obtained from simulations closely matches that obtained from ACh channels when a step potential barrier of 2-3 kTr is placed at the channel neck. The current-voltage relationship obtained with symmetrical solutions is ohmic in the absence of a barrier. The current-voltage curve becomes nonlinear when the 3 kTr barrier is in place. With asymmetrical solutions, the relationship approximates the Goldman equation, with the reversal potential close to that predicted by the Nernst equation. The conductance first increases linearly with concentration and then begins to rise at a slower rate with higher ionic concentration. We discuss the implications of these findings for the transport of ions across the membrane and the structure of ion channels.
منابع مشابه
Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملPermeation of ions across the potassium channel: Brownian dynamics studies.
The physical mechanisms underlying the transport of ions across a model potassium channel are described. The shape of the model channel corresponds closely to that deduced from crystallography. From electrostatic calculations, we show that an ion permeating the channel, in the absence of any residual charges, encounters an insurmountable energy barrier arising from induced surface charges. Carb...
متن کاملClogging of Model Pores with Brownian Particles
Pore clogging with Brownian particles is of wide interest in filtration processes. We perform experiments where model sub-micrometric pores are clogged using a Brownian suspension. We study the influence of the ionic strength on the clog formation dynamics. The erosion/drag force competition is also studied using a crossflow in the inlet channel. The way the clogs disintegrate after the cloggin...
متن کاملSame ion channel populations and different excitabilities: beyond the conductance-based model
Multicellular organisms rely on electrical signaling to communicate messages within and between different tissues. Channel-mediated ionic transport is typically modeled with conductance-based formulations that assume currents are the result of ionic electrical drift, without taking diffusion into consideration [1]. In contrast, formulations of current that assume ionic flux depends on electrica...
متن کاملDynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description
The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 75 2 شماره
صفحات -
تاریخ انتشار 1998